作者单位
摘要
浙江理工大学机械与自动控制学院,浙江 杭州 310018
为了提取固体表面的微振动信息,本文提出了一种基于正弦相位调制干涉仪和实时归一化PGC-DCM算法的探测方法。采用归一化PGC-DCM算法实现载波相位调制深度和载波相位延迟的计算,然后对正交干涉信号分量进行预归一化,再经过运算消去干涉信号条纹的对比度系数,实现正交干涉信号分量的完全归一化,最后利用微分交叉相乘原理实现干涉信号相位的解调。利用数值仿真证明了解调算法的有效性,并在光学暗室环境中搭建了一套正弦相位调制干涉系统,对多种不同频谱特征的固体表面微振动进行探测实验和信息解调;实验结果表明,所提方法能够准确探测固体表面的微振动信息,在3 kHz的被测微振动频率范围内,干涉信号相位解调的平均信噪失真比为33.0956 dB,动态范围优于22.75 dB。
测量 正弦相位调制 表面微振动 调制深度 载波相位延迟 归一化 
中国激光
2022, 49(3): 0304001
Author Affiliations
Abstract
School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
A laser interferometry technique is developed to detect water surface capillary waves caused by an impinging acoustic pressure field. The frequency and amplitude of the water surface capillary waves can be estimated from the local signal data at some special points of the phase modulated interference signal, which is called the turning points. Demodulation principles are proposed to explain this method. Experiments are conducted under conditions of different intensity and different frequency driving acoustic signals. The results show the local signal data analysis can effectively estimate the amplitude and frequency of water surface capillary waves.
120.3180 Interferometry 120.7280 Vibration analysis 
Chinese Optics Letters
2017, 15(7): 071201
作者单位
摘要
1 哈尔滨工业大学电气工程及自动化学院, 黑龙江 哈尔滨 150001
2 上海航天技术研究院, 上海 200240
针对低频水表面声波(WSAW)的频率识别问题, 提出了一种基于改进相位生成载波(PGC)解调的激光相干探测方法。利用简单的激光干涉系统探测水下声源激发的低频WSAW, 再利用4路载波信号对其进行混频, 通过功率比较遴选出2路功率最大的正交干涉信号, 然后进行相位解调和频谱分析, 实现了WSAW的频率测定。仿真和实验研究表明, 改进的PGC解调法能够有效防止载波信号初始相位不可控条件下的正交信号消隐并准确实现低频WSAW的频率识别(频率探测下限可达30 Hz), 对变频WSAW及大尺度扰动波干扰条件下的低频WSAW也取得了很好的检测效果。该研究结果表明改进的PGC解调方法能够准确实现WSAW的频率识别, 并具有很强的抗干扰能力。
光通信 激光干涉 频率识别 相位载波 水表面波 水下声信号 
中国激光
2017, 44(9): 0906006
Author Affiliations
Abstract
School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
To determine the amplitude of weak sinusoidal water surface acoustic wave (WSAW), a method based on the spectrum analysis of the phase-modulated interference signal is developed. Calculated from the amplitude spectrum of the detection signal, a characteristic ratio indicates that the phase-modulation depth of a WSAW is suggested by determining the amplitude of a WSAW according to their functional relationship. Experimental investigations for a 4 kHz WSAW evaluate the measurement’s precision with an amplitude measurement standard deviation of 0.12 nm. The measurement accuracy also is demonstrated by the experimental investigations. The theory of this method is briefly described, and the experimental setup is presented.
120.3180 Interferometry 120.7280 Vibration analysis 060.2370 Fiber optics sensors 010.7340 Water 
Chinese Optics Letters
2015, 13(9): 091202

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!